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Hybrid Dynamical System Model and Robust
Control of a Hybrid Neuroprosthesis Under
Fatigue Based Switching

Zhiyu Sheng, Vahidreza Molazadeh and Nitin Sharma

Abstract—A hybrid neuroprosthesis controller that integrates
a modified PD-based robust controller to compensate for elec-
tromechanical delay during functional electrical stimulation and
a variable structure controller to control a powered exoskeleton
is developed. A hybrid dynamical systems approach is used to
model the hybrid neuroprosthesis control and prove the stability.
Simulation results demonstrate the model and the control design
during a standing task.

I. INTRODUCTION

Functional electrical stimulation (FES) and powered ex-
oskeleton technologies have recently been investigated [1]—
[3] to restore lower limb function in persons with spinal cord
injury (SCI). FES uses muscles to actuate limb joints, but
often results in the rapid onset of muscle fatigue, which limits
the duration of its use. Powered exoskeletons, are not limited
by muscle fatigue, but could be bulkier to use [4]. A hybrid
neuroprosthesis that combines both FES and electrical motors
has therefore been proposed [4]-[7] to overcome limitations
of FES and powered exoskeleton.

We foresee the following challenges in the control design
of a hybrid neuroprosthesis.1) Collaboration between FES
and electrical motors should use a control strategy that
limits limb joint error as well as muscle fatigue. 2) Multiple
control laws are required to address disparate characteristics
of FES and electric motors. For example, to ensure system
performance and stability, the control of FES, unlike an elec-
tric motor control, must compensate for electromechanical
delay (EMD), high model uncertainty and nonlinearity of the
musculoskeletal system. Therefore, a modeling and control
approach that is based on switching or hybrid dynamical
system theory [8], [9] seems most pertinent to address these
challenges.

In [10], a switching strategy based on fatigue information
was designed for a single degree of freedom (DOF) hybrid
neuroprosthesis. The controller used feedback linearization
and a second order sliding model control for both FES and
motors; i.e, the control design neglected the presence of EMD
during FES. In our past work, we have shown that improved
system performance can be obtained with controllers that
compensate for EMD during FES [11]-[13]. This paper
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Figure 1. 5 DOF hybrid neuroprosthesis model

integrates two different, robust control laws for FES and mo-
tors. Specifically, the control design considers a multi-DOF
musculoskeletal system with EMD and model uncertainty.
The control laws do not share a common Lyapunov function
because the error states are defined differently and separate
terms that compensate for EMD are used to control FES.
Therefore, the stability proof is non-trivial and a Lyapunov
analysis that considers a hybrid dynamical system is required.
Main results of this paper are organized as follows. 1) In
Section II, a hybrid dynamical system model is formulated.
It utilizes two types of control laws: a) a complete powered
exoskeleton control b) a mixed FES and motor usage; i.e.,
motor to control hip joints and FES to control knee joints.
The switching between the control laws is based on limb
joint error and muscle fatigue state. 2) In section III, the
control laws, namely, a PD-based robust controller with
an additional variable gain and a delay compensation term
and a variable structure controller (VSC), are designed and
analyzed for stability. 3) In Section IV, overall stability of the
hybrid dynamical system is analyzed via a Lyapunov stability
method to obtain a globally uniformly ultimately bounded
result.

II. MODELING THE HYBRID NEUROPROSTHESIS AS A
HYBRID DYNAMICAL SYSTEM

A. Dynamics of the Hybrid Neuroprosthesis

Euler-Lagrange (EL) equation of the 5 degree of freedom
(DOF) hybrid neuroprosthesis is based on the 5-link pinned
point feet model of walking during swing phase [14], with
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additional terms describing the neuromuscular dynamics and
the actuator dynamics,

DEE(q)i + CFE(q,4)q + GFE(q) + MEX(q,¢) + WFE
=B (Eult— 7))+ By (Ev) + QE (D)

where t € R is time, and ¢(t) = (qi,...,q5)7 € R are
time dependent joint angles, illustrated in Fig. 1. DFL(q) €
R5%5, CFL(g,¢)e R>*® and GFL(q) € R® are generalized
inertia matrix, Coriolis matrix and gravity term, respectively.
In (1), MEL (g, ) € R® is a elastic-viscous vector expressing
passive moments introduced by the musculoskeletal system at
each joint and W% € R® is a term containing all the system
disturbance. On right hand side of (1), BFY (&, u(t — 7))
represents joint actuation using FES at knee joints g3, g4 and
using motors at hip joints g1, g2, while B&E (¢, v) represents
for actuating q1, g2, g3, g4 With motors. u(t — 7) = (uq(t —
1), .y us(t—74))T € R* is the delayed control signal vector
in BEL, with known constant 7; € R~ (i = 3,4) due to
EMD and 7, = 75 = 0 because motors are assumed to have
zero delay. v = (vy, ...,v4)T € R* is the control signal vector
in BEL and ¢ € {—1,1} is a switching signal, which is based
on muscle fatigue. A horizontal human assisting force F), €
R, due to a walker, is introduced to avoid under-actuation.

Define error signal e = (e1,..,eq)l € RY r =
(r1,.ora)T € R* and e. = (ec1,..,eca)l €
RY, with e; = [\ wi(0)dd (i = 1,2), e; =

Ji_, sen (ri(0)) ui(0)do (i = 3,4), such that Vi = 1...4,

€; = qd,; — qi, )

Ty = & +oe; — f#ﬁecm 3)
where «,3 € Rs( are constants to be designed and
qa = (qa1,-,qa4)T € R is the desired trajectory for
joint g;, (i = 1...4). Upper body position angle g5, instead
of following a precise trajectory, is maintained within an
approximate range by human assisting force F. Therefore,
ga,5 can be directly taken as ¢4 5 = ¢5 and it is unnecessary
to define e5. Open loop error dynamics regarding e, r can
then be rewritten as

D(q) (éjd +ar—a’e—7r+ 5‘*‘715 (aee — éc))
+C(q,q) <Qd+a6—7”—§—;1 ec>
+G(q) + Mev(q: 4) + D5(q)das + Cs(q: d)da,s
+W = Bi(§u(t — 7)) + B2(§,v) + QrFy, (D)

where G, M.,,, W, B;, Bo, QF are first 4 rows of GEL,
MEL wWEL BEL S BEL QEL | respectively, while D €

ev

R**4, D5 € R* and C € R4X4 Cs € R4, are corresponding
submatrices of DFZ and CFL, respectively.

B. Actuator Dynamics

Detailed expressions of By (&, u(t — 7)), B2(&,v), QpFps
in (4) will be derived in this subsection.

When joint ¢; (i = 3,4) is actuated by FES, torque exerted
via corresponding quadriceps-hamstring (Q)-H) muscle pair,
can be written as

T - LHsen (i) £Q.inq. (Uact.@.i — Utq.i)
FES;i 2 US,Q,i — Ut,Q,i
1 —sgn(ri) prinm,i (Yact, i — Ut n,i)

2 Uorti Ui
where, () and H muscles are activated in turn determined by
sgn (r;) signals. n¢g ;,nH,; € Rso are unknown ¢ dependent
nonlinear functions containing torque-length/torque-velocity
relationship, while Uy g ;, Uy, ms € Rso and Uy, ,i.Us 1,i €
R+ are threshold and saturation stimulation levels, respec-
tively [15]. By defining n € {Q, H}, i € {3,4}, the actual
input stimulation amplitude gt n,; 1S assumed to always
operate beneath saturation level and is designed as

= Kp,iu; + Ut n.i, (6)

Uact,n,i

where K ; € Ry is a variable gain to be designed. p1g,; €

[sQ,i» 1], pm,i € [SH,, 1] in (5) are muscle fatigue states [10]
modeled as the following when EMD exists,
finyi = Doni(pinyis i (8 — 73), ui(t — 75),t) @)
1
= n,i — Hn,i)An,i 1-—- n,i 1-—- n,i).
Tfm(c i~ Hnsi) i+ Tr,m( fini) (1 = ani)

ag.; _ 1+sgn(r2i(t7‘ri)) ZIJiBQIZh—(é?g)z’ ami —
1_Sgn(r§(t_”)) 51“,%::{) TfnisTrni € Ry are

fatiguing and recovery constants while ¢,; € (0,1) is
minimum fatigue level.

When joint ¢; (¢ = 1...4) is actuated by electrical motor,
torque generated depends on the motor constant K, ; € R+.
Since B; and Bs in (4) utilize different control signals, motor

torque Tm})tom( 1,2) and Tfl’gw” (i = 1...4) will be
modeled dlfferently, as
Tﬁcl)tori Km’iKB,iu“ Tm(z)tori = Km’ivh (8)

where Kp ;, u; and v; all preserve their previous definitions.

Therefore, with Trps,; (i = 3,4), T, (i = 1,2)
contributing to By when £ = 1 and Tyt (1 = 1.4
contributing to By when £ = —1, considering EMD 7; (i =

1..4) in By, it can be written explicitly that
1+¢

Bi(&u(t—171)) = KBBlu(t - 7), 9)
1—¢ -
By(§,0) = —= (Knv+ Ba) (10)
ISB = dlag (KBJ, ceey KB,4)9 Km = dlag (Km,17 ceny Km’4),
B = diag (K 1, K 2, 13,%4), T, =
I4sgn(ri(t—74))  1Q,iNQ,i 1—sgn(ri(t—7:)) pH,iMH,
2 _ Usqi—Utq,i 2 Us a,i—UtH,i

(i = 3,4). By € R* is the remaining actuation from B; due
to EMD after switching, which can be assumed bounded and
will certainly disappear after time ¢t* + max, {7}, where t*
is the time instant when & switches from 1 to —1.

Finally, Qr is used to transfer F, to generalized
force and is expressed as Qr = (l1cos(q1 +¢q3+q5) +
Iy cos (g1 + gs),0,11 cos (g1 + g3+ q5) ,0)7.
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C. Fatigue Based Switching Logic

The torque generated by FES varies with muscle fatigue
and recovery, as in (7). Therefore, to obtain a consistent joint
torque a fatigue based switching logic determines the value
of £ € {—1, 1}, which further determines activation of either
(9) or (10). The fatigue based switching logic is designed as

¢r=—t (e )T (11

where (-)~and ()T denote the value just before and after the

switch, respectively. Define p = (/J,Qvg,/J,H’g,,U/QA,,UzHA)T,
y=(e",r", uT &7, universe U = R® x[cq 3, 1] x[cpr,3, 1] X
[s0,451] X [sm,4,1]x{—1,1} and set D is given by

D:{yeuzgz 1,3n € {Q, H} i€ {3,4} s.lptn.; gﬁ}

€D,

UngUDe,«gU <Df mDerj m{y€u£:_l7

Vne {Q HY i€ {3,4} sty > u}) (12)

where p, i € [zn—lg}i {sq.issm,i}, 1], p < T are constants
describing fatiguing7 and recovery limits to enable switching.
D¢, Dere, Dy and De,; are additional states dependent
conditions to be designed to address stability issues. Note
that £ = 0 when (e7,77uT,6)T € OD U D¢, where dD
denotes boundary of D while D¢ denotes the complement set
regarding universe U/. (11), (12) indicates that £ changes from
1 (or —1) to —1 (or 1) once certain criteria mainly determined
by fatigue states p of (Q-H muscle pairs are met. After one of
the fatigue states drops below the designed threshold, system
will utilize actuation (10) instead of (9) until all of the fatigue
states recover to the designed values.

D. Tracking Error Based Hybrid Dynamical System Model

According to definition in [8] and using (2), (3), (4), (7),
9), (10), (11), (12), the error based hybrid neuroprosthetic
system, under fatigue based switching, tracking ¢, can be

modeled as
y=F(y,u,v)
H,, -
o {zﬁ =6(y")

where state vector y = (e?, 7T, uT,€)T. Jump set D is given

by (12) while flow set is C = 0D U D¢. Flow map F and
jump map G are given by

yeC

yeD’ 13)

§+

F=(—aec+ 1ﬁec,}",, r,o7,
G = (6_77’_(—6_)7/1_, _5_)Tu
where F, = (q+ar— a26+5+15(aec—ec +D~ ( ( +
ae — 17 — Be.) + G + Mey + Dsiias + Csdas +
W - Bl(£7 (t - T)) - 32(57 ) QFF) and I' =
(I'g3,I'n3,1q4,1q,4)

In the end of this section, additional assumptions will be
made as the following: (Al) ¢4, q4,5 and their derivatives
are known and bounded. F, is estimated as |F,| < F,,
F, € Rsy. Qp is bounded because it consists of linear

(14)

combinations of sin (-). Disturbance W is assumed to be
bounded. (A2) Mcy(q,q), i n € {Q,H}, i € {3,4},
are bounded. (A3) Parameters in (12) can be designed so
that time between two switches are always greater than
max {7‘1} .

i=1

III. CONTROL DEVELOPMENT

In this section, based on (13), stabilization of cases: £ = 1
and & —1 are considered as separate problems and
two different controllers are individually designed based on
Lyapunov stability analysis.

A. & =1, Knee Joint Angle Actuated by FES

When £ = 1, each knee joint is actuated by a Q-H muscle
pair using FES. Due to the main challenge induced by EMD,
a PD-based controller with additional variable gain K g and
a delay compensation term will be designed. Firstly, applying
feedback control law

u(t) = RK,r(t).

Constant K,, € Rsg, R = diag(1,1,sgn(rs),sgn(ry)).
Secondly, define ® = 1Dr + e+ D (ja + a¢) + C4 + G +
Mey + Dsas + Csqas, ®a = D(qa)da + C(qa,da)da +
G(qa) + Mev(qds 4a) + D5(qa)Ga,s + Cs(qa, 4a)da,s, so that
12— @l < pllzl)12ll. = = (eT,rT,el)T, which can
be proved by mean value theorem [16], with p(]z]), a
positive, globally invertible nondecreasing real function. Fur-
ther, ||®q4+ W/ < V¥ and |QrF,|| < QrF,, V,QFr €
R< g, according to (Al), (A2). Finally, by defining R, =
diag (1,1,sgn (r3(t — 73)),sgn (r4(t — 74))), closed loop er-
ror dynamics is derived as

15)

1 .
Di=— Dr—e+®— &+ s+ W-QpF, (16)
~ DK, + (DR, — KpBy) ReKor(t — 7).

The following properties and definitions will be used during
stability analysis.

o |7 < rTDr < oy |r| . (17)
1 1
A1 ”yPT” 26 € + r’ Dr < A2 ||yerH
Yer = (e T, rT. (18)
|B*r(t = 1) < osllr(t=7)|, o3| < a5 (19)
1 2
Bllell llecll < - IIecll : (20)
52
7]l [lr(t = 7)| S;II r(t— 1) tom H 1. @
t
—Ti/ u? (0)do < —eii (22)
t—T1;

Remark 1. () In (19), B* = D — B~ KgBR,, 03 =
max{ eig(B*TB*)}, where eig(B* B*) = {031...03.4}
are eigenvalues of B*" B*. Variable gain Kp introduced

in (9) provides some flexibility to manipulate o3 to reach
desired ranges with bounded perturbations, therefore |o3| <
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o3 € Rsyg. (ii) In (17), 01,02 € Ry are minimal and
maximal eigenvalues of D(q), therefore o1 = o1(e, qq),
o9 = o02(e,qq). 01,02 are upper and lower bounded due
to property of inertia matrix. In (18), A1, A2 € Ry are
constants. (20) and (21) are obtained by Young’s inequality
and constants €2,e? € Rsq. (22) is obtained by Cauchy-
Schwarz inequality.

A Lyapunov function candidate can be designed as

4
1 1
Vg, = 5eTe + §TTDT+ Z (Pri+ Psy), (23)
i=1
where P ; =  w; ft (fs 9)d9) ds, Pa; =
0351(5 ft - e)dg w; € Ry, i =1...4.

Theorem 2. Provided o1, \1, 53, €2, € from Remark 1, o, =
max {w;7;} (i = 1...4), control gains «, B, K, and initial
K2

2.2
conditions (e}, r{)T of system (16) Sflti?‘ying B T
f(6T7TT7qd7KB) = 01 — 20-732 - 0328 > 0, UlﬁK

_ 2
ng‘f' 0326 K2 > 0, (60,7"0) S Q(],

Qo = {(eTv TT)T

)ﬁKu—JJTKQ—Kl

e,r € R4)\2H T TT||+ Z

(Pui + o) < AliI:nlln4{1’ 2:231€i>\ }072(2\/7)

A Ve Fy)?

% — 01}, where Ki, K3 € Ry are constants,
K, > K?’ I+ K3, Lyapunov function (23) converges semi-

globally from Vp, —according to Vg, < Vp, e 4
O(1—e 0. Constant 01 € Ryq can be designed arbitrary
small. x, 0,0 € R are constants derived from subsequent
stability analysis.

Proof: Take time derivative of Vg, with control law
(15) and close loop error dynamics (16) substituted into the
equation and further apply property (17), (19), as well as
previously discussed bounded characteristics of || ® — @],
@+ W]

Vi, < —allel® = BKyoq |r||* + 338K, |||l Ir(t — 7)]|
+ Bllell lleell + 1171l o(ll=11) 121l + [17]] (¥ + Qr )

4 4 _ 9
+ Z wiTiKirf—l— Z Lﬁé{ug (rf — rf(t — Tl))
i=1 i=1

4 t
- Z wi/ u?(0)do
i=1 b=

Further, by defining a set 7 = {i|7; # 0,7 = 1...4} to deal
with thp singularity issue when 7, = 0 and using (20) and
(21) , V, can then be derived as

. T
VBl S - < > || || Z? (wi — R — 6%) eii
i€T

- <alﬂKu - (2”32 + 28 ) BK, wTK3> 1712
+ 7l oCllz1) 2] + {7 (‘I’+QF w)

(i [ towsr |_ow).

i€T

where constants k;,7;,€2 € Ry are always able to
choose such that x; > v;,w; — K; — ?2 > 0. By com-
pleting squares, applying (22) and considering the fact

that ftt_ (f; u?(&)d@) ds < 7; sup f; u?(0)df =
t—7; <s<t
Ti ft . u?(0)df, Vi, will become
= =82
' P*(l=1) (\II+QFF;5)
< — SN 0 v 77
Vi < = (= Z00 ) g +
¢ ¢
— Z( / </ uf(e)do) ds
TiWi t—1; s

Q’YZK UgﬁKUE /t 9
U 7(0)do ).
+ 5351:{”62 2 b ’rz( )
Provided gain and initial conditions in Theorem 2 satisfied,
X is some constant such that x < min{a — Hl, I},
— 222D > 0, where ITy = oy 8K, — (25 + "35 )BK, —
O K2 — K1 K3, I, = —(wz -k — %). Usmg (18)
and the fact — ||z[| < — ||ye|[, as well as P, = Po; = 0
when 7; = O defining constant A3 € Ry such that A3 <

flfél,}l{x £ ([Hém, A2(fi:%), 2’,\3?35“ }. Vi, can be further
derived as
~ =2
. P2 (l=11) (\IJ+QFFz)
< — — J S e
Vs, < @ T ) e+
1 /A i 2X2v: Ky
—Z ; (Mp“ 722 ‘ P2,i)
ieT 2 Tiwi g3P€
A3 (1 :
< - )\3<e e+ rTDrJr; P11+P22)>
1Ky
Considering (23), Vi, < 23V, + LR
onsidering (23), Vg, < —53Vp, + ~——gz—— can be

obtained and solved as

Ao (U + QpF,)

Ve, <V -3t
Bi,€ 2 + W

(1 — ef%gt) .

B. £ = —1, Knee Joint Angle Actuated by Motor

When ¢ = —1, all the joints are actuated by electrical
motors. Following the same procedure as when £ = 1, the
open loop error dynamics can be expressed as

Dy :—*DT—G—BQ’U—F(I)I L

+ <I>2l — By — QpF, + W, (25)

where ' = %Dr—i—e—i—D (Ga + aé)+CG+G+Mey+Dsias+
Csqa,5. P = D(qa)Ga+C(qa, 4a)da+G(qa) +Mev(qa, 4a)+
D5(qa)das + Cs(qdsda)da,s. According to (A1), (A2),
18 = @4 < o) el || @+ W = Ba| < 9 and

”QFFZ” < QFFms where ye, = (eT’TT)T’ U e R>0 and
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0 (lyer]) is real, positive, globally invertible, nondecreasing.
To facilitate the stability analysis, a Lyapunov function can-
didate is chosen as

1 1
Vi, = zele+ 5rTDr. (26)

2

Theorem 3. Lyapunov function (26) of system (25) converges
exponentially (rom any initial value, provided control law

vo= Kt (g (e m%wnwwu+mt+QpF>+A;Q,
where control gain K, € Ry is a constant.

Proof: Take time derivative of Vp,, substitute the error
dynamics (25) into the equation with input designed accord-
ing to Theorem 3 and finally use property (18),

. 1 4 1.
Vg, =eT (r — ae) + irTDr +rT (—§D7‘ —e— Kv
+ 0~y + @~ By~ QrFy + W)
9 _
< —allell” + Il (o' Uyerl) lyerll + ¥ + QrF:)
r _
=" (o el el + 9 + QrFe) + Ko

2 2
<—allef” = Ky 7]
A
Y
where Ay = min {a, K, } . With initial value Vp, , Vp, can
be solved as

VBQ7

< 27

_ay
V32 < VB20€ A2

IV. STABILITY ANALYSIS OF THE HYBRID DYNAMICAL
SYSTEM

Considering (13), (14) with controllers designed according
to Theorem 2,3, all the states vary continuously within
flow set C and r immediately jumps with £ € {—1,1}
changing its sign when reaching jump set D. Zeno behavior
never occurs because every jump immediately drives system
states from D to the interior of C with finite nonzero
distance to any boundary points, so that there must exist a
lower bounded time duration that system states will spend
flowing back to D for next jump. Therefore, state vector
y(t) = (T, 7T, u’, €)T behaves in a piecewise continuous
manner affected by &. Instead of analyzing system behavior
around some equilibrium points, stability of sets is motivated
when exploring hybrid dynamical systems [8]. In this section,
design of the switching logic (12) will be completed and it
can be shown that state vector of (13) converges to a set in
finite time.

Firstly, a Lyapunov function candidate for hybrid dynam-
ical system [8] is designed as

1 T

V—ie e+ rDJr ZP12+P21,
where all notations preserve their definitions. To describe
the piecewise switching behavior, define sequence sw =
{swj};zl along state vector y, where j,, € Zso, sw; =

(28)

(tj,fj,yj, Vi Voj, V&j) S RZO X{*l, I}XUXRZO XRZO X
R>g. j refers to the piece between (j — 1)th and jth jump.
t]' S [teyjfl,teyj], j € Z>0, t370 = 0. teﬁjflvte,j are time
instants when jump occurs and y; = (e JT, ]T,MJT,Q)T =
y(t;), Vi = V(t;), Vo = Vltej-1,§) Ve = Vte;, &)
Without loss of generality, y is assumed initially inside
flow set C with £ = 1 so that & = (—=1). Secondly,
basing on (24), choose ultimate bound of Vg, as , =

=~ = \2
0+ % (62 arbitrarily small constant) and further

design Deye, Der,, Dye in (12) as

Dere = { ("7 1" )" €U 1€ = 1,(e"r")T € 0},
Der, = {(e] 1T ] &) €U (] 1T)T € Qo 1,
T T

Dye = {(" 1" 1" )" €U € = 1,VKp,s1.f <8},

Dy = {(eT,rT,uT,f)T cU:3Kp,stf> 54}. (29)

Q, = {(e", 71T e,r € R4 /\QH T TTH + Z

(Pt i) 2 min (L ) (VRTY) -

Ao (T+QpFy)° / / / L
% - (51} 0 € ]R>O, 51 < 01. 01, Qg is given

1n Theorem 2 and Q,; = { €7 ) T ej,r; € RY, %e?ej +

rTDr; < max{Qu,Ve,J,l 65}, Ve,o = Voa}. fis given
in Theorem 2. 93, 84 are constants and 0 < d3 < d4. Constant
05 € R5q can be chosen arbitrarily small. Finally, stability
results of (13) are stated in Theorem 4.

Theorem 4. Provided y(t) = (eT, 7T, uT, &)T is well defined
on U, Derg, Der;, Dye and Dy in (12) are designed as
(29), controllers are designed according to Theorem 2,3, then
tracking error ye, = (eT,7T)T of (13) is globally uniformly
ultimately bounded, i.e., y € U converges from any initial
value 1o a set Qg = {(eT, 7Ty T, )T el : H T T|| <
Qer} in finite time, where constant Q¢ € R~ is given by
subsequent analysis.

Proof: Considering (23), (24), (26), (27), (28) and def-
inition of sw;, when conditions in Theorem 4 are satisfied,
following properties can be obtained.

Vi < Vo e ¥ + 55 (1 —e %%, (30)
Veor = Vo,2k41, k € Z>o, 3D
Voor = Veor—1l = Ali—y ., € Loos k€ Zso,  (32)

where ¢;,S5; € Rso are determined by (24), (27) and

Sop = 0, Sppy = 2(EFQeR)T s 31 holds

sk
because P ; = Po; = ¢e.; = 0, 1 = 1...4 at time %, o

4
due to assumption A3. A =|> (Pr;+ Pa;) +
i=1

Bec)TD(é—Foze—ﬂec) —% (é+ae)TD(é+ae) ’ and (+) € L
denotes boundedness. Due to fatigue dependent C, D and the
assumption that y initially flows in C with £ = 1, as well as
(30), (31) and (32), for any finite j, V ; and t. ; —t. ;1 are
also finite. Hence, two cases are discussed:

(i) When j,, — o0 as t — oo, consider subsequence
{swaor—1}rey and {swo}re, k € Zso. Due to (31) and

%(é—l—ae—
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in (29), forcing Vo o1 = Veor < max{Qy, Ve or—1 — 85},
there must exist some finite integer £* > % such that
Vk > k*, Voou+1 < €. Besides, because of boundedness
property at odd jump indices given by (32) and monotonic be-
havior of V; given by (30) during flow, it can be obtained that
Vk = k", Voaite < Al L+ Veakn < Al L+
Vo,2k+1 < max {A} + Q,, where Qy = {(eT,rT)T ie,r e

R*, ZeTe + 3rT Dr+ Z (P1i+ P2;) < Q,}. Therefore,
Vi>2k*+1,Vp; < max{A}+Q .Using (30), it can be ob-
tained that V; < (Vo5 —Sj)e ¢iti +SJ < max{Vp;,S;} <
max {A}+€Q,,. This means that V¢ > Z (e,

)< \/V/)q < (max{A}+Q )//\1 and

uniform ultimate boundedness result is therefore guaranteed.
(i1) When j,,, is finite as ¢ — oo, the proof is trivial because
there is no switch after time instant . ; _q. Therefore,

w>z(

to V(t ) < VOJ e Pimt +S;
has a uniform ultimate bound.

To sum up, (13) under designed controllers and switching
logic yields global uniform ultimate boundedness. It should
be noted that assuming y initially inside C with £ = 1 does
not reduce generality because according to F, G, C and D, y
of any other initial conditions will enter C with £ = 1 within
finite time and jumps and exactly same procedure of proof
can be applied after that.

te j,l) track-

ing error ||y (t

tej—1), V decays continuously according

(L= ety so that e, (1)

V. SIMULATION RESULTS

In this section, simulation is conducted in a standing
scenario, where system is reduced to 3 DOF by assuming
both legs have exactly the same behavior. As a result, go,
q4 of the swing leg are removed and ¢, g3 will represent
for position angles of both stance legs. Torso position angle
@5 is controlled by human. Results illustrated in Fig. 2 show
that the standing posture described by ¢, g3 are regulated
from ¢; = 185°, g3 = —10° to ¢z = 190°, ¢35 = —30°
by using FES with 70 ms EMD at knee joints, motors at
knee and hip joints. FES and motors collaborate according
to switching logic and designed control laws, which not only
guarantee stability of the hybrid dynamical system, but also
allow muscle fatigue states to decrease and recover between
desired values p = 0.6 and z = 0.85.

VI. CONCLUSION

In this paper, a multi-DOF hybrid neuroprosthesis, inte-
grating a modified PD-based robust controller and a VSC to
control FES and motors, is developed to address problems
associated with muscle fatigue, EMD and model uncertainty.
The hybrid dynamical system model is formulated to design
switching logic and analyze stability. Globally uniformly
ultimately bounded tracking is proven, with demonstration in
the simulation to accomplish a standing task. Future studies
will include optimal trajectory planning, input saturation and
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Figure 2. Simulation result in a standing scenario

output constraint problems, so that simulations and experi-
ments can be conducted in more complicated scenario.
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